Introduction to Concurrent
Programming

Lecture 1 of TDA384/DIT391

Principles of Concurrent Programming

Nir Piterman and Gerardo Schneider

Chalmers University of Technology | University of Gothenburg

UNIVERSITY OF
GOTHENBURG

"_ a\ S * |I_
h.‘-_\ __ >

CHALMERS

UNIVERSITY OF TECHNOLOGY

ST,
éfij UNIVERSITY OF GOTHENBURG

Today’s menu

* A motivating example
 Why concurrency?
* Basic terminology and abstractions

e Java threads

* Traces

@%Y) UNIVERSITY OF GOTHENBURG

P

A Motivating Example

i) CHALMERS (8§)) UNIVERSITY OF GOTHENBURG

UUUUUUUUUUUUUUUUUUUUUU e

As simple as counting to two

We illustrate the challenges introduced by concurrent programming on a simple
example: a counter modeled by a Java class

* First, we write a traditional, sequential version

* Then, we introduce concurrency and...run into trouble!

Sequential counter

public class Counter ({
private int counter = 0;

// 1ncrement counter by one
public void run () {
int cnt = counter;
counter = cnt + 1;

}

// current value of counter
public int counter () {
return counter;

}

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

s; UNIVERSITY OF GOTHENBURG

public class SequentialCount {
public static
vold main (String[] args) {
Counter counter = new Counter();
counter.run(),; // increment once
counter.run(); // increment
twice
// print final value of counter
System.out.println (
counter.counter());

— What is printed by running: java SequentialCount?

— May the printed value change in different reruns?

ST,

CHALMERS () UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

s

Modeling sequential computation

5 public void run() {

6 int cnt = counter; e
7 counter = cnt + 1; e
8 } o

e counter.run(); // first call: steps 1-3
e counter.run(); // second call: steps 4-6

LOCAL STATE OBJECT STATE
1 pc:6 cnt: I counter: 0
2 pc:7 cnt: 0 counter: 0
3 pc:8 cnt: 0 counter: 1
4 pc:6 cnt: I counter: 1
5 pc:7 cnt: 1 counter: 1
6 pc:8 cnt: 1 counter: 2
7 done counter: 2

%) CHALMERS

IIIIIIIIIIIIIIIIIIIIII

;I UNIVERSITY OF GOTHENBURG

W ...

Adding concurrency

Now, we revisit the example by introducing concurrency:

Each of the two calls to method run can be executed in parallel

* InJava, this is achieved by using threads
Do not worry about the details of the syntax for now, we will explain it later

The idea is just that:
— There are two independent execution units (threads) t and u

— Each execution unit executes run on the same counter object
— We have no control over the order of execution of t and u

Concurrent counter

public class CCounter public class ConcurrentCount {
extends Counter public static void main (String[] args) {
implements Runnable CCounter counter = new CCounter();
{ // threads t and u, sharing counter
// threads Thread t = new Thread (counter) ;
// will execute Thread u = new Thread (counter) ;
// run() t.start(); // increment once
} u.start(); // increment twice
try { // wait for t and u to terminate
t.join(); u.join();

} catch (InterruptedException e) {
System.out.println ("Interrupted!");

} // print final value of counter

System.out.println (counter.counter())

bl

— What is printed by running: java ConcurrentCount?
— May the printed value change in different reruns?

N U N Uy Uy

0:

CHALMERS g:; 5 UNIVERSITY OF GOTHENBURG

What?!

jJavac Counter.java CCounter.java ConcurrentCount.java
java ConcurrentCount. java

java ConcurrentCount. java

The concurrent version of counter
java ConcurrentCount.jawva occasionally prints 1 instead of the

expected 2

java ConcurrentCount. java .
* |tseems to do so unpredictably

Welcome to concurrent programming!

ST,

éi "5_35 UNIVERSITY OF GOTHENBURG

S ':

CHALMERS

UNIVERSITY OF TECHNOLOGY

DOES IT
WORK?

CONCURRENCY

geek & poke

%*fs)j UNIVERSITY OF GOTHENBURG

Why concurrency?

&0, UNIVERSITY OF GOTHENBURG

Reasons for using concurrency

Why do we need concurrent programming in the first place?

 Abstraction:

* Separating different tasks, without worrying about when to execute
them (Ex: download files from two different websites)

* Responsiveness:

* Providing a responsive user interface, with different tasks executing
independently (Ex: browse the slides while downloading your email)

* Performance:

* Splitting complex tasks in multiple units, and assigh each unit to a
different processor (Ex: compute all prime numbers up to 1 billion)

ﬁ UNIVERSITY OF GOTHENBURG

-

Concurrency vs. parallelism

Principles of concurrent programming
VS.
Principer for parallell programmering

Huh?

&) UNIVERSITY OF GOTHENBURG

Concurrency vs. parallelism

We will mostly use concurrency and parallelism as synonyms

However, they refer to similar but different concepts:

* Concurrency: nondeterministic composition of independently executing units
(logical parallelism)

* Parallelism: efficient execution of fractions of a complex task on multiple processing units
(physical parallelism)

* You can have concurrency without physical parallelism: operating systems running on
single-processor single-core systems

* Parallelism is mainly about speeding up computations by taking advantage of redundant
hardware

CHALMERS

UNIVERSITY OF TECHNOLOGY

& E}g UNIVERSITY OF GOTHENBURG

Concurrency vs. parallelism

|deal situation

Photo: Summer Olympics 2016, Sander van Ginkel.

N

CHALMERS () UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

j

Photos: World Cup Nordic ‘07, Tomoyoshi Noguchi — Vasaloppet ‘06, Steven Hale.

CHALMERS

UNIVERSITY OF TECHNOLOGY

%4}5 UNIVERSITY OF GOTHENBURG

Concurrency vs. parallelism

Real world situation

1| 1,%_, s
Jii :j:ﬂ oL]Jeel:lelel |eeiele s
=T i £ 3)Jle oooocoD.

Photo: Daniel Mott 2009 Photo: Wolfgangus Mozart 2010

Challenges:

— Concurrency: everyone gets to do their laundry (fairness),
machines are operated by at most one user (mutual exclusion)

— Parallelism: distribute load evenly over machines/rooms (load balancing)

Solutions: schedules, locks, signs/indicators...

ST,

) CHALMERS | (88)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Moore's law and its end (?)

The spectacular advance of computing in the last 60+ years has been driven by
Moore’s law

The density of transistors in integrated circuits
doubles approximately every 2 years

I Stuttering [Chip introduction
@ Transistors per chip, ‘000 @ Clock speed (max), MHz @ Thermal design power*, w dates, selected
Transistors bought per $,m Pentium 4 \ Xeon] i tmv 2 UUL:’

= l — l Log scale

15 Pentium 11 10

Pentium I TY 1>
7‘~:?nt1.|7'7; _. 9 7;. ; 7;
- e b 10°
086 8

10°

10
10!

. . r ! —
1970 75 80 85 90 95 2000 05 10 15

Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

@) UNIVERSITY OF GOTHENBURG

COMMUNICATIONS

Exponential Laws of
Computing Growth

Biasiny s5 ¥ « 7
| Technology ' AR
(Artificial 157
iIntelligences .6
Think Again’
Cell-Graphs -
," Deploying. SON
inthe Erterprise - =102

b 3

Technology for. .
the Most Effective
Use’of Mankind

Opinion

* February 16, 2C

|nte| - Angstrom era

More Manufac Super ! H
M

MIM Capacitor

COAG 4

First FINnFET

1970

Enhanced

Enhanced Strain

- Hi-K Metal Gate : ' Ribbon
= innovation
< \ - increased
Strained e Intel e RibbonFET performance
5 Silicon 10nm +PowerVia
SuperFIN Denser design Continued
i p
libraries metal linewidth
:~J ! reduction
! - Increased
o ipe Trgngstgr transistor
O : 22nm optimization .
25 Intel for performance drive current
' 32
nm Efs _
< : Intel)ﬂm Metal stack Redyced via
! 45nm b enhancements resistance
x| Intel |)
O | 65nm ncrease
'; : |8tr?rl_n Enhanced use of EUV
u i FinFET
® ! |
_z : - Enhanced
: " FinFET
I
i
1
i
I
I
I
I
1
I

AN
i
*’, iy

&0, UNIVERSITY OF GOTHENBURG

Concurrency everywhere

Physical restrictions force to change from increasing processing speed to having multiple
processing having a major impact on the practice of programming:

— Before: CPU speed increases without significant architectural changes
e Concurrent programming is a niche skill (for operating systems, databases, high-

performance computing)
* Program as usual and wait for your program to run faster

— Now: CPU speed remains the same, but number of cores increases

* Concurrent programming is pervasive
* Program with concurrency in mind, otherwise your programs remain slow

Very different systems all require concurrent programming:
— embedded systems,

— desktop PCs,
— smart phones, — the Raspberry Pij,
— cloud computing, ...

— video-games consoles,
e

“2Y CHALMERS

W-' uuuuuuuuuuuuuuuuuuuuuu

Amdahl's law: Concurrency is no free lunch

'I UNIVERSITY OF GOTHENBURG

We have n processors that can run in parallel
How much speedup can we achieve?

sequential execution time

speedup = :
e P parallel execution time

Amdahl’s law shows that the impact of introducing parallelism is limited by the

fraction p of a program that can be parallelized:
1

(1-p)+p/n
~ N

sequential part parallel part

maximum speedup =

@) UNIVERSITY OF GOTHENBURG

Amdahl's law: Examples

maximum speedup = =)

With n=10 processors, how close can we get to a 10x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP

20% 80% 3.57
10% 90% 5.26
[1% 99% 9.17

With n=100 processors, how close can we get to a 100x speedup?

% SEQUENTIAL % PARALLEL MAX SPEEDUP

20% 80% 4.81
10% 90% 9.17
1% 99% 50.25

CHALMERS

UNIVERSITY OF TECHNOLOGY

{8%)) UNIVERSITY OF GOTHENBURG

Amdahl's law: Examples

Amdahl’s Law

20 -_——____—__—_—____—_—_’__'—_-'_'___'::_’:;—_-_— p—
///
7
) // \
" £ b g ~ 95% parallelism:
" A I N N | Qe 75% \ Speedup up to 4096
14 / —.— 90%
/ - processors
12 / (uselss to add more)
o /
=]
3 /
@ 10 t-——1————————— 7 R R e e R e e B e ey
3 /.’-'
o) H . n / >
50% parallelism: . -
. 7T~
Adding more than / |7
. 6 / /]
16 processors is /17
A
UseleSS L +——+—— —/:4‘————.—..—._‘—_:__—_.—..'.—..—--ﬁrf-""" mmmmmmmmm e e]
2_
0
— o N @ [{=] N ~F o] © ﬁ T [=2] (] N 5 @® [{e]
~ @ 8 N o4 8§ @28 28 B &
= R =@ e

Number of processors

Source: Communications of the ACM, Dec. 2017

£0) CHALMERS (8§)) UNIVERSITY OF GOTHENBURG

IIIIIIIIIIIIIIIIIIIIII :
T

Basic terminology and
abstractions

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

%)) UNIVERSITY OF GOTHENBURG

Processes

A process is an independent unit of execution — the abstraction of a running
sequential program:

— identifier
— program counter
— memory space

The runtime/operating system schedules processes for execution on the
available processors:

CPU; running process Ps CPU; running process Py

suspend

scheduler

Process P, 1s waiting e—

Process states

)

ﬁ UNIVERSITY OF GOTHENBURG

The scheduler is the system unit in charge of setting process states:

Ready:

ready to be executed, but not allocated to any CPU

Blocked: waiting for an event to happen

Running:

running on some CPU

blocked

event l

NEwW —p-

ready

resume

suspend

wait

running .
© = terminate

'?‘-}:"'i_, UNIVERSITY OF GOTHENBURG

Threads

A thread is a lightweight process — an independent unit of execution in the same program

space:
* identifier @redmemory
* program counter /’ \

°* memory Thread T} o Thread 7',
* |ocal memory, separate for each thread I I
* global memory, shared with other threads TE s sl | |70 Noeil i

In practice, the difference between processes and threads is fuzzy and implementation
dependent. In our course:
Processes: executing units that do not share memory (in Erlang)

Threads: executing units that share memory (in Java)

)

j UNIVERSITY OF GOTHENBURG

Shared memory vs. message passmg

Shared memory models: Distributed memory models:
— communication by writing to shared — communication by message passing
memory — e.g., distributed systems

— e.g., multi-core systems

Thread 74| ... |Thread T, Process P1 Process P,

.

message

223y CHALMERS

{8%)) UNIVERSITY OF GOTHENBURG

Java threads

. cor;r.uctor -
Creating Threads
join

 What does a thread need to do?

Main Memory

start() Start a thread by calling run() method

run() Entry point for a thread

join() Wait for a thread to end

isAlive() Checks if thread is still running or not

setName() Swapped out and waiting Swapped out and blocked
getName()

getPriority() Page file / swap space

https://en.wikipedia.org/wiki/Process_state

CHALMERS J) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHHNOLOGY I':ig,. 2
iR

Extend Thread

lass MyThread extends Thread

1

public void run()
i

System.out.println({"concurrent thread started running..™);

classMyThreadDemo

1

public static void main(String args[])

{
MyThread mt = new MyThread();

mt.start();

.) P UNIVERSITY OF GOTHENBURG
Hierarchy: Animals
EXtend? * Animal
* Mammal .
Object - Bank Account
* Dog
e » Accounts have certain data and operations
* Cat — i 1
- Dai{:gardless of whether checkmg, savings, etc.
! Kinds of Bank Accounts
+ Reptile — account nu
* Crocodile — bﬂ'EnCE - ACCﬂunt
* lguana
— owner .
: — Checking
* Operations
_ open * Monthly fees
— close . Nllinimum balance.
— get balancs — Savings
— deposit * Interest rate
~ Withdraw + Each type shares some data and operations
of "account", and has some data and
operations of its own.

Advanced C++ Programming 15

CHALMERS

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Implement Runnable

* Java does not support multiple inheritance.

class MyThread implements Runnable
r

public woid run()

r
L

System.out.println{“concurrent thread started running..");

class MyThreadDemo

r
L

public static wvoid main(String args[])

I
L

MyThread mt = new MyThread();
Thread t = new Thread(mt);

t.start();

A i
) CHALMERS ®)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY --...-

Java threads

Two ways to build multi-threaded programs in Java:
— inherit from class Thread, override method run

— implement interface Runnable, implement method run

public class CCounter
implements Runnable

{

CCounter ¢ = new CCounter () :;

// thread's computation:

public void run() ({ Thread t = new Thread(c);

int cnt = counter: Thread u = new Thread (c);
counter = cnt + 1;
} t.start ()
} u.start () ;

States of a Java thread

blocked/
waiting sleep()
join()
eventl resume
ready running

v

terminate

-

....
- -
lllllll

new, s’car‘c()suSpend

Resuming and suspending is done by the
JVM scheduler, outside the program’s
control

*’i“i"k
P i,
As;-ﬁﬁ

CHALMERS

IIIIIIIIIIIIIIIIIIIIII

)

ﬁ UNIVERSITY OF GOTHENBURG

Fora Thread object t:

— t.start ():markthe thread t ready
for execution

— Thread.sleep (n): block the
current thread for n milliseconds
(correct timing depends on JVM
implementation)

— t.Jjoin () : block the current thread
until t terminates

= "'*"_ CHALMERS

‘ TTTTTTTTTTTTTTTTTTTTTTTTTT

5 UNIVERSITY OF GOTHENBURG

Thread execution model

. Shared vs. thread-local memory:
@red Obj@ — Shared objects: the objects on
/ \ which the thread operates, and
thread t; | ... [thread t, all reachable objects
I I — Local memory: local variables,
and special thread-local

t1’s local memory | t,,’s local memory

attributes

Threads proceed asynchronously, so they have to coordinate with other threads
accessing the same shared objects

: 11."’”5;1}

) CHALMERS éiﬁ UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

One possible execution of the concurrent counter

. public class CCounter implements Runnable {
int counter = 0; // shared object state

// thread's computation:
public void run () {

O J o O b W IN Pk

int cnt = counter; o o
counter = cnt + 1; e e
1) o o # t’S LOCAL u’S LOCAL SHARED

1 pce:6ente: L | pey:6cent,: L | counter: 0
2 pcy:7centy: O \ pc,: 6 cnt,: L | counter: 0
3 pcr:8cnti:0 | pc,:6cent,: L | counter: 1
4 done \ pc,: 6 cnt,: L | counter: |
5 done __pc,:7cent,: 1 | counter: 1
6 done . pcy:8cnty: 1 | counter:?2
7 done | done | counter:2

i -ﬂa-#

. 7) CHALMERS £3)) UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

One alternative execution of the concurrent counter

. public class CCounter implements Runnable {
int counter = 0; // shared object state

// thread's computation:
public void run () {

int cnt = counter; o o
counter = cnt + 1; e e
b o o B t’S LOCAL u’S LOCAL SHARED

I pci:6cente: L | pcy:6centy,: L | counter: 0
2 pce:7enty: 0 pc,: 6 cnty: L | counter: 0
3 pcr:7centy: 0 | pey:7ent,: 0 | counter: 0
4 pci:Tenty: O pc,: 8 cnt,: 0 counter: 1
5 pce:8cente: 0 done counter: 1
6 done done counter: 1

#73) CHALMERS (&%) UNIVERSITY OF GOTHENBURG
5 UNIVERSITY OF TECHHOLOGY 'ﬁ s

Traces

Traces
t’S LOCAL u’S LOCAL SHARED
1 pce:6ente: L | pcy:6cent,: L | counter: 0
2 pce:Tente: 0 pc,: 6 cnt,: L | counter: 0
3 pce:7cente: 0 | pey:7enty: 0 | counter: 0
4 pce:Tente: 0 | pcy:8cent,: 0 | counter: 1
5 pce:8centy: 0 done counter: 1
6 done done counter: 1

The sequence of states gives an
execution trace of the concurrent
program

#) CHALMERS gi_; £9)) UNIVERSITY OF GOTHENBURG

A trace is an abstraction of
concrete executions:
— atomic/linearized

_ Complete Another trace
A different
— interleaved interleaving
t’S LOCAL u’S LOCAL SHARED
1 pci:6cnty: L | pcy:6¢cnt,: L | counter: 0
2 pce:7centi: 0 pc,: 6 cnt,: L | counter: 0
3 pc:8centi: 0 pcy: 6 cnty,: L counter: 1
4 done pc,: 6 cnt,: L | counter: 1
5 done pcy: 7 cnty: 1 counter: 1
6 done pcy: 8 cnty,: 1 counter: 2
7 done done counter: 2

+) CHALMERS {Q@ UNIVERSITY OF GOTHENBURG

Trace abstractions

cnt = counter counter = ¢cnt + 1
thread t __f_ _ _ e
; cnt = cQunter ; counter = cht } 1
thread u [L L
counter ? 0: ; x1 X A
trace states: bt 5 3 A5 8

Atomic/linearized: The effects of each thread appear as if they
happened instantaneously, when the trace snapshot is
taken, in the thread’s sequential order

Complete: The trace includes all intermediate atomic states

Interleaved: The trace is an interleaving of each thread’s linear trace
(in particular, no simultaneity)

“»y CHALMERS

ol UNIVERSITY OF TECHNOLOGY

Abstraction of concurrent progréms

When convenient, we will use an abstract notation for multi-threaded applications, which is
similar to the pseudo-code used in Ben-Ari’s book but uses Java syntax

&) UNIVERSITY OF GOTHENBURG

int counter = 0;< shared memory
thread t thread u
int cnt; int cnt; < local memory
1 ¢cnt = counter; cnt = counter; 1
2 counter = ¢cnt + 1; counter = cnt + 1; 2
code

Each line of code includes exactly one instruction that can be executed atomically:
— atomic statement = single read or write to global variable

— precise definition is tricky in Java, but we will learn to avoid pitfalls

Y CHALMERS

UNIVERSITY OF TECHNOLOGY

@%Y) UNIVERSITY OF GOTHENBURG

P

© 2016—2019 Carlo A. Furia, Sandro Stucki

@O0

Except where otherwise noted, this work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/.

